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1. Introduction

Over the last few years, increasing evidence has been accumulated that (in the large N

limit) 4-dimensional gauge theories have a dual description in terms of a higher-dimensional

string theory. This so-called AdS/CFT correspondence [1 – 3] has predominantly been

tested in the supergravity approximation of string theory at small curvatures (see however

the analysis in the plane-wave limit [4]). On the other hand, the AdS/CFT correspon-

dence actually relates the weak coupling regime of gauge theory to backgrounds with high

curvature in string theory. It would therefore be very interesting to understand and check

the correspondence for such configurations. Unfortunately, the high curvature regime of

type IIB string theory on AdS5 × S5 that is dual to four-dimensional N = 4 SU(N) SYM

theory is difficult to control at present.

The situation is different for the AdS3/CFT2 duality for which both the ten-dimen-

sional string theory as well as the two-dimensional boundary conformal field theory are

explicitly known (for a review see [5]). Starting from the intersection of N1 D1-branes

and N5 D5-branes compactified on a four-torus T 4, one finds AdS3 × S3 × T 4 as the
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corresponding near-horizon geometry. After S-duality, the worldsheet theory with target

space AdS3×S3×T 4 is an N = 1 SL(2)×SU(2) WZW model which is in principle solvable to

all orders in α′. The conjectured dual field theory arises as the infrared fixed point theory

living on the D1-D5 system. The fixed point can be described by an N = (4, 4) sigma

model whose target space is a deformation of the symmetric product orbifold Sym(T̃ 4)N =

(T̃ 4)N/SN , where T̃ 4 is related to the four-torus T 4 [6] and SN is the permutation group

of N symbols. It has been argued in [7] that the orbifold limit corresponds to the point

(N1, N5)=(N, 1) in the D1-D5 moduli space.

In this paper, we will subject this correspondence to a non-trivial test by comparing

the correlators of certain chiral primary fields in both theories. We will follow the approach

outlined in [8] that explains how the correlators of the boundary conformal field theory can

be obtained from the world-sheet correlators of the string theory.1 There it is suggested that

the integration of vertex operators over the worldsheet yields the corresponding boundary

operator. This is motivated by the fact that the continuous SL(2) representation labels

x, x̄ are identified with the complex coordinates in the boundary conformal field theory, as

already noted in [10].

Here we shall apply this programme to the full theory, including the SU(2) WZW model

as well as the theory on T 4. We shall concentrate on the chiral primary operators that

correspond to the n-cycle twist operators in the boundary conformal field theory [11]. In the

boundary conformal field theory their correlation functions were first calculated for a special

case in [12] and then, in general, in [13, 14] (see also [15] for earlier work). The correlation

functions in the world-sheet theory (on the sphere) can be reduced to standard 3-point

functions of the SU(2) and SL(2) WZW models that have been determined before in [16, 17]

and [18 – 20], respectively. The comparison of the 2-point functions determines the relative

normalisation constants between the field operators on both sides of the correspondence.

The comparison of the 3-point functions is then a non-trivial consistency check. In the

large N limit (in which the dominant string contribution comes from the sphere diagram)

we find beautiful agreement.

In the supergravity approximation, the correlators of these chiral primary fields were

previously computed in [21, 22]. A quantitative comparison with the boundary conformal

field theory at the orbifold point (for which the conformal field theory correlators are

known) is however impeded by the fact that the corresponding D1-D5 system is at strong

string coupling. By S-duality this can be mapped to the F1-NS5 system at small string

coupling, but then the AdS3 radius is of order of the string length, and hence α′ corrections

have to be taken into account.

The paper is organised as follows. In section 2, we review the symmetric orbifold

theory and the correlators of n-cycle twist operators found by Lunin and Mathur [13, 14].

In section 3, we then compute correlation functions of the corresponding primary vertex

operator in the worldsheet theory with target space AdS3×S3×T 4 and compare them with

those in the boundary conformal field theory. Our conclusions are contained in section 4.

1For correlation functions involving more than three fields, the analysis of Gopakumar [9] should be

relevant.
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There are three appendices where some of the more technical material is explained.

2. Sigma model on the symmetric orbifold

The Higgs branch of the D1-D5 system compactified on T 4 flows in the infrared to a two-

dimensional (4, 4) superconformal field theory with conformal charge c = 6N1N5. The

global part of the N = (4, 4) superconformal algebra forms the supergroup SU(1, 1|2)L ×
SU(1, 1|2)R and contains the R-symmetry group SU(2)L × SU(2)R. It is generally believed

that the target space of this particular (4, 4) SCFT is identical to the instanton moduli

space P of N1 instantons in the U(N5) gauge theory on T 4. This idea is motivated by

the fact that the D1-branes can be viewed as instantons of the low-energy theory of the

D5-branes. The appropriate low-energy description of the D1-D5 system is therefore given

by a sigma model with target space P.

2.1 The n-cycle twist operators

The moduli space P of the infrared (4, 4) SCFT is the symmetric product orbifold

Sym(T̃ 4)N = (T̃ 4)N/SN , where SN denotes the permutation group of N = N1N5 sym-

bols. The four-torus T̃ 4 is closely related to the T 4 in the worldsheet model, for the

exact relation see ref. [6]. The moduli space is parametrized by the scalars Xi
A, where the

A = 1, . . . , N runs over the N copies of T̃ 4, and i = 1, 2, 3, 4 denotes the vector index

in T̃ 4. The orbifold action on (T̃ 4)N by the symmetric group SN means that any point

(X1, . . . ,XN ) on (T̃ 4)N is identified with the points obtained by any permutation of the

XA (A = 1, . . . , N).

The orbifold theory consists of the invariant operators of the original theory, together

with operators from the twisted sectors. For non-abelian orbifolds the twisted sectors are

associated to the conjugacy classes of the orbifold group, which is SN in our case. These

conjugacy classes are labelled by partitions of N into positive integers,

N∑

l=1

lkl = N = N1N5 , (2.1)

corresponding to the permutations with kl cycles of length l. We are mainly interested

in the conjugacy class with one cycle of length n, i.e. kn = 1 and k1 = N − n. The

corresponding permutations are of the form

(XA1 → XA2 , . . . ,XAn → XA1) , XB → XB , B 6∈ {A1, . . . , An} , (2.2)

where A1 6= A2 6= . . . 6= An ∈ {1, . . . , N}. We call the corresponding operators n-cycle

twist operators and denote them by

Σ(n)(x, x̄) , j′ = n−1
2 = 0, 1

2 , 1, . . . , N−1
2 . (2.3)

The label j′ = j̄′ = (n − 1)/2 denotes the charge under the SU(2)L × SU(2)R R-symmetry

group, and their conformal dimension is h = h̄ = (n − 1)/2. In particular, they therefore

satisfy h = j′, and thus define chiral primary fields. These fields are the analogues of the
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single-trace operators in the N = 4 super Yang-Mills theory. As such, they correspond

to single-particle states. The theory obviously also has operators for conjugacy classes

with more than one cycle; these describe multi-particle states (see also [13, 14, 5]). In the

following we shall however restrict attention to the above n-cycle twist operators.

2.2 Correlators of n-cycle twist operators

The chiral primaries of the (4, 4) superconformal field theory actually fall into short multi-

plets of the supergroup SU(1, 1|2)L×SU(1, 1|2)R. In particular, they therefore define repre-

sentations of the SU(2)L × SU(2)R R-symmetry. The above operators Σ(n) are the highest

weight states with respect to this action; if we include the m′ and m̄′ dependence we should

therefore write them as Σ(n) ≡ Σ
(n)
j′,j′ . More generally, we may thus also define the operators

Σ
(n)
m′,m̄′ by acting on Σ

(n)
j′,j′ with the SU(2)L and SU(2)R lowering operators — see [13] for

more details. There are also different chiral primary operators that can be obtained by

multiplying Σ(n) with appropriate combinations of spinors ψi
A [5], the superpartners of the

Xi
A. However, in this paper we shall only consider the chiral primaries Σ

(n)
m′,m̄′ .

The two- and three-point functions of the chiral twist operator Σ
(n)
m′,m̄′ have been cal-

culated, using path integral methods, in [13, 14]. The two-point function is given by [13]2

〈Σ(n)
m′,m̄′(x1, x̄1)Σ

(n)
−m′,−m̄′(x2, x̄2)〉 =

1

|x12|4h
, (2.4)

where h = (n − 1)/2. Here we have normalised the fields in the usual way. With this

normalisation the three-point function is given by

〈Σ(n1)
m′

1,m̄′

1
(x1, x̄1)Σ

(n2)
m′

2,m̄′

2
(x2, x̄2)Σ

(n3)
m′

3,m̄′

3
(x3, x̄3)〉 = δ2(

∑3
a=1 m′

a)Cn1,n2,n3

∏

i<j

1

|xij|2hij
,

(2.5)

with h12 = h1 + h2 − h3, etc., and δ2 is the product of the Kronecker δ for the barred and

unbarred
∑

a m′
a. For the choice (d ≥ 0)

m′
1 = m̄′

1 = j′1 − d , m′
2 = m̄′

2 = j′2 , m′
3 = m̄′

3 = −(j′1 + j′2 − d) = −j′3 , (2.6)

the fusion coefficients Cn1,n2,n3 = C
(1)
n1,n2,n3 C

(2)
n1,n2,n3 are given by

C(1)
n1,n2,n3

=
s2 d! (n1 − d − 1)!

n1 n2 n3 (n1 − 1)!
, C(2)

n1,n2,n3
=

√
n1n2n3(N − n1)!(N − n2)!(N − n3)!

(N − s)!
√

N !

(2.7)

with 2s = n1 + n2 + n3 − 1 and 2d = n1 + n2 − n3 − 1. Here C
(1)
n1,n2,n3 is the coefficient in

the three-point function coming from single representatives of the conjugacy classes; the

factor C
(2)
n1,n2,n3 on the other hand results from the summation over all elements in the

given conjugacy classes. Since nj denotes the cycle length we obviously have nj ≤ N for

2The twist operator Σ(n) is denoted by O−−

n in [13] and defined by eq. (6.42) therein.
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j = 1, 2, 3. In addition, as explained in [13] we also have that s ≤ N . For the special case

d = 0, the three-point function (2.5) was first found in [12].

For later convenience, we also write the correlators in terms of the labels j′ = (n−1)/2,

identifying Vj′,m′,m̄′ ≡ Σ
(n)
m′,m̄′ . As in eq. (2.4), we normalise the two-point function in the

boundary conformal field theory as

〈Vj′,m′,m̄′(x1, x̄1)Vj′,−m′,−m̄′(x2, x̄2)〉 =
1

|x12|4j′
. (2.8)

The corresponding three-point function then equals

〈Vj′1,m′

1,m̄′

1
(x1, x̄1)Vj′2,m′

2,m̄′

2
(x2, x̄2)Vj′3,m′

3,m̄′

3
(x3, x̄3)〉 = Cbcft

j′1,j′2,j′3

∏

i<j

1

|xij |2j′ij
, (2.9)

where Cbcft
j′1,j′2,j′3

= C
(1)
j′1,j′2,j′3

C
(2)
j′1,j′2,j′3

is given by (d = j′12 ≥ 0)

C
(1)
j′1,j′2,j′3

= (j′1 + j′2 + j′3 + 1)2

(
Γ(j′13 + 1)Γ(j′12 + 1)

Γ(2j′1 + 1)
∏3

i=1(2j
′
i + 1)

)
(2.10)

C
(2)
j′1,j′2,j′3

=

( ∏3
i=1(2j

′
i + 1)Γ(N − 2j′i)

Γ(N − j′1 − j′2 − j′3)
2Γ(N + 1)

)1/2

. (2.11)

Here the m′ labels are chosen as in eq. (2.6) and j′12 = j′1 + j′2 − j′3, etc.

As before, there are some restrictions on the quantum numbers j′i (i = 1, 2, 3). In

particular, the bounds ni = 2j′i + 1 ≤ N and s ≤ N in eq. (2.5) translate into

0 ≤ j′i ≤ N−1
2 , j′1 + j′2 + j′3 ≤ N − 1 . (2.12)

For the comparison with the string correlators on the sphere only the large N limit will be

relevant; in this limit, the total coefficient simplifies to

Cbcft
j′1,j′2,j′3

N→∞
=

(j′1 + j′2 + j′3 + 1)2√
N

∏
i(2j

′
i + 1)

1
2

Γ(j′13 + 1)Γ(j′12 + 1)

Γ(2j′1 + 1)
. (2.13)

In the next section we will reproduce this result by computing the three-point function (on

the sphere) of the dual worldsheet vertex operators of string theory on AdS3 × S3 × T 4.

3. Superstring theory on AdS3 × S3 × T 4

The AdS/CFT correspondence relates the above 2-dimensional conformal field theory with

string theory on AdS3 × S3 × T 4. This is the near-horizon geometry of the D1-D5 system.

By S-duality we can relate this to the configuration of fundamental strings and NS5 branes.

The latter system then has a description in terms of a WZW model. More precisely, the

relevant world-sheet theory is the product of an N = 1 WZW model on H+
3 , an N = 1

WZW model on S3 ∼= SU(2) and an N = 1 U(1)4 free superconformal field theory.

This WZW model has the affine world-sheet symmetry ŝl(2)k × ŝu(2)k′ × u(1)4. In

the following we shall (as is usual for N = 1 WZW models) decouple the fermions from
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the currents; the resulting bosonic currents (that then commute with the fermions) are Ja

for SL(2), and Ka for SU(2). We denote the free fermions that come from the SL(2) part

by ψa, while those from the SU(2) part are χa. (In either case, a takes the three values

a = (+, 0,−).) Finally the u(1)4 symmetry is described in terms of free bosons as i∂Y i,

and the corresponding free fermions are λi (i = 1, 2, 3, 4).

Criticality of the fermionic string on AdS3×S3 requires the identification of the levels k

and k′ [6], k = k′.3 Furthermore, the SU(2)R×SU(2)L global R-symmetry of the boundary

conformal field theory corresponds to the isometry SO(4) = SU(2) × SU(2) of the three-

sphere S3. In the SU(2) WZW model this symmetry is identified with the horizontal

subalgebras generated by the Ka
0 and K̄a

0 of the affine ŝu(2)k′ symmetry. The levels k = k′

are to be identified with the number N5 of NS5-branes,

k = k′ = N5 . (3.1)

Finally, it is common lore in the AdS3/CFT2 correspondence to interpret the continuous

SL(2) representation labels (x, x̄) (that will be introduced momentarily) with the complex

coordinates of the boundary conformal field theory [10].

For the comparison of worldsheet and boundary CFT correlation functions, we also

have to identify the point in the moduli space of the D1-D5 system (or better the S-dual

F1-NS5 system) at which string theory on AdS3×S3×T 4 is dual to the symmetric orbifold

theory. In [7] it was argued that the symmetric orbifold corresponds to the point N1 = N ,

N5 = 1, where N1 is the number of fundamental strings and N5 the number of NS5-branes.

At this point the AdS3 radius RAdS = ls(g
2
6N1N5)

1
4 = ls

√
N5 (in the F1-NS5 system)

is of order of the string scale (g2
6 = N5/N1 is the six-dimensional string coupling), and

supergravity is not a good approximation any more. We must therefore consider the full

worldsheet theory.

On the other hand, we will only be able to calculate the world-sheet correlators on

the sphere, whereas the full string theory amplitude also involves the contribution from

arbitrary genus Riemann surfaces. We therefore need to work in the limit where gs is small;

since we have [6, 11]

g2
s =

N5

N1
Vol(T 4) , (3.2)

gs is small if Vol(T 4)N5 ¿ N1. By T-duality arguments [6], the volume can be chosen as

Vol(T 4) ≥ 1. At the point N1 = N , N5 = 1 and fixed volume Vol(T 4), the worldsheet

theory is weakly coupled if N is large such that Vol(T 4) ¿ N . Note that the AdS space

is still strongly curved in the large N limit and the WZW model is the only reliable

description.

Unfortunately, the worldsheet model is not properly defined for (N1, N5) = (N, 1),

since the bosonic level k′
bos = N5 − 2 = −1 is negative at this point. We therefore choose

3We shall use the convention that k and k′ denote the levels of the supersymmetric N = 1 theory; the

levels of the bosonic affine symmetries are then shifted by the dual Coxeter numbers, kbos = ksusy + 2 and

k′

bos = k′

susy − 2.
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N1 and N5 as (N1, N5) = (N/N5, N5) with N5 > 1 but fixed, such that gs remains small

for large N . Even though we will compute the correlators at a point in the moduli space

different from the orbifold point, we will see below that the worldsheet correlators do not

depend on the actual factorisation of N = N1N5, but only on N . It is therefore natural to

expect that the results will agree with those expected from the orbifold theory, at least at

large N .

3.1 The chiral primaries in the worldsheet theory

After these preliminary discussions we now need to study the fields of this world-sheet

theory. First we describe the left-moving fields. The highest weight states of the SL(2)

and SU(2) WZW model are denoted by Φj,m and Φ′
j′,m′ , respectively; their conformal

dimensions are

∆j = −j(j − 1)

k
and ∆′

j′ =
j′(j′ + 1)

k′
. (3.3)

The OPE’s of the bosonic SL(2) currents Ja with the primary fields Φj,m are given as

J±(z)Φj,m(w) =
m ∓ (j − 1)

z − w
Φj,m±1(w) + : J±Φj,m(w) : + . . . ,

J0(z)Φj,m(w) =
m

z − w
Φj,m(w) + : J0Φj,m(w) : + . . . , (3.4)

where j ≥ 1.4 The OPEs of the Ka-currents with the primary fields Φ′
j′,m′ are similar, but

we do not need them in the following; more details about the SL(2) and SU(2) primary

fields and their correlators can be found in appendix A.

To construct the ‘chiral primaries’ of the worldsheet theory on AdS3 × S3 × T 4 that

correspond to the chiral primaries of the boundary conformal field theory described in

section 2, we now need to tensor these left-moving fields with corresponding right-moving

fields. Furthermore, we have to make sure that the fields survive the GSO-projection and

have the correct ghost number. In the following we shall only consider the NS sector. The

left-moving fields of interest are then [11]

Wj′,m′,m = e−φ(ψΦ)j−1,mΦ′
j′,m′ , (j′ = 0, 1

2 , . . . , k′

2 − 1) (3.5)

where

(ψΦ)j−1,m = ψ0Φj,m − 1

2
ψ+Φj,m−1 −

1

2
ψ−Φj,m+1 . (3.6)

The bosonised superghost fields e−φ ensure that the operator Wj′,m′,m has the correct

ghost number −1. Furthermore, in order to guarantee that Wj′,m′,m has also the correct

conformal weight we need to set

j = j′ + 1 , (3.7)

4We are using here the same conventions as in KLL [11] except that jKLL = j − 1. However these repre-

sentations are not of the type discussed by [8] in their analysis of the bosonic WZW model corresponding

to SL(2).
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which justifies dropping the j label in the definition of Wj′,m′,m. In fact, using that k = k′,

we have

∆(Wj′,m′,m) = ∆(e−φ) + ∆(ψ) − j(j − 1)

k
+

j′(j′ + 1)

k′
= 1 , (3.8)

and since ∆(e−φ) = 1/2, the conformal dimension of the matter part is indeed ∆ = 1
2 , as

required. Since k′ = N5, only N5−1 of the N n-cycle twist operators in the orbifold theory

have a dual worldsheet operator of the type (3.5); in the following we shall only consider

those. It is generally believed that the remaining twist operators are dual to worldsheet

operators involving spectrally flowed SL(2) representations [23, 24].

Introducing the compact notation

ψa = (ψ+, ψ0, ψ−) , ba = (−1
2 , 1,−1

2 ) a = (+, 0,−) . (3.9)

the operator Wj′,m′,m can be written as

Wj′,m′,m = e−φbaψ
aΦj,m−aΦ

′
j′,m′ . (3.10)

The analysis for the right-movers is identical, and the full local fields are then [11] (see

also [6, 25])

V
(1)
j′,m′,m̄′,m,m̄(z, z̄) = Wj′,m′,m(z) W̄j′,m̄′,m̄(z̄) . (3.11)

The chiral primary V
(1)
j′,m′,m̄′,m,m̄ is the ‘Fourier transform’ of the operator

V
(1)
j′,m′,m̄′(z, z̄;x, x̄) =

∑

m,m̄

V
(1)
j′,m′,m̄′,m,m̄(z, z̄)x−m−j′−1x̄−m̄−j′−1 , (3.12)

which depends both on the worldsheet coordinates (z, z̄) as well as on the representation

labels (x, x̄). In addition to the worldsheet conformal dimension (∆, ∆̄) = (1, 1), the

operators V
(1)
j′,m′,m̄′(z, z̄;x, x̄) have also spacetime scaling dimensions (h, h̄) = (j′, j′) [11].

Since the variables x and x̄ are to be identified with the complex coordinates of the 2d

conformal field theory on the boundary, these dimensions predict the scaling of the two-

point function of V
(1)
j′,m′,m̄′(z, z̄;x, x̄) as |z12|−4∆ and |x12|−4h.

For the analysis of the 3-point functions we also need the corresponding operators with

ghost number zero

V
(0)
j′,m′,m̄′,m,m̄(z, z̄) = W0

j′,m′,m(z) W̄0
j′,m̄′,m̄(z̄) , (3.13)

that are obtained from V
(1)
j′,m′,m̄′,m,m̄ by acting with the picture changing operator Γ+1. The

only non-vanishing contribution comes from eφG− 1
2

in Γ+1, and hence one finds

W0
j′,m′,m = eφG− 1

2
Wj′,m′,m , (3.14)

where the global N = 1 superconformal generator G− 1
2

= 1
2πi

∮
G(z) is given by the

supercurrent G(z)

G(z) =
2

k

(
ψaJa − i

3k
fabcψ

aψbψc

)
+

2

k

(
χaKa −

i

3k
f ′

abcχ
aχbχc

)
+ λi∂Yi . (3.15)
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Using the SL(2) structure constants fabc, we can write the SL(2) part of G(z) as

G(z)
∣∣∣
SL(2)

=
1

k

(
ψ+J− + ψ−J+ − 2ψ0J0 +

2

k
ψ+ψ0ψ−

)
. (3.16)

After some algebra, we find, more explicitly,

W0
j′,m′,m = ba : JaΦj,m−a : Φ′

j′,m′ +
2

k
Aabψ

aψbΦj,m−a−bΦ
′
j′,m′ ≡ W0,A

j′,m′,m + W0,B
j′,m′,m ,

(3.17)

where the matrix Aab = A
(1)
ab + A

(2)
ab is given by

A
(1)
ab = −dm−b

a bb , A
(2)
ab =




0 b− 0

0 0 b+

−1
2b0 0 0


 , (a, b = +, 0,−) (3.18)

and

ba = (−1
2 , 1,−1

2 ) , dm
a = (−1

2(j − 1 + m),m, 1
2(j − 1 − m)) (a = +, 0,−) . (3.19)

For later convenience we denote the two terms in eq. (3.17) by W0,A
j′,m′,m and W0,B

j′,m′,m,

respectively. We note that in writing W0
j′,m′,m we ignored terms coming the SU(2) part of

G(z), such as ψaχbΦj,m−aΦ
′
j′,m′−b. For reasons discussed below, we do not need the precise

form of these terms. (The U(1)-part of G acts anyway trivial since W is in the ground

state with respect to the U(1) excitations.)

3.2 Correlators in the worldsheet theory

It is suggested in [11] that the operators V
(1)
j′,m′,m̄′,m,m̄ and V

(0)
j′,m′,m̄′,m,m̄ of the world-sheet

theory correspond to the chiral primary operators Vj′,m′,m̄′ of the boundary conformal field

theory. We now want to check this identification by comparing their correlation functions.

3.2.1 Worldsheet two-point function

Let us begin with the two-point function of the chiral primary field V
(1)
j′,m′,m̄′,m,m̄(z, z̄),

G2 = g−2
s 〈V (1)

j′,m′,m̄′,m,m̄(z1, z̄1)V
(1)
j′,−m′,−m̄′,−m,−m̄(z2, z̄2)〉S2 , (3.20)

which will be evaluated on the sphere. Substituting the explicit expression of V
(1)
j′,m′,m̄′,m,m̄,

eq. (3.11), into G2, we get

G2 = g−2
s ba1bā1ba2bā2〈ψa1ψa2〉〈ψ̄ā1 ψ̄ā2〉|z12|−2

× 〈Φj,m−a1,m̄−ā1Φj,−m−a2,−m̄−ā2〉〈Φ′
j′,m′,m̄′Φ′

j′,−m′,−m̄′〉 , (3.21)

where the summation over a1, ā1, a2, ā2 is understood. The factor |z12|−2 comes from the

propagator of the ghosts. Using the form of the 2-point function of the SU(2) chiral primary

fields Φ′
j′,m′,m̄′ given in eq. (A.16), and that of the fermions ψa,

〈ψa1(z1)ψ
a2(z2)〉 =

k ηa1,a2

2 z12
(a1, a2 = 0,±1) , (3.22)
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where η+− = 2 and η00 = −1, the two-point function G2 simplifies to

G2 = g−2
s

k2

4

ba1bā1ba2bā2

|z12|4∆
′

j′
+4

ηa1a2ηā1ā2〈Φj,m−a1,m̄−ā1Φj,−m−a2,−m̄−ā2〉 . (3.23)

The only nonvanishing terms in G2 are those for which a1 = −a2 and ā1 = −ā2.

Next we employ the formula for the two-point function of the SL(2) primaries in m-

space,

〈Φj,m,m̄Φj,−m,−m̄〉 =
πB(j)δ(0)

|z12|4∆j

Γ(1 − 2j)Γ(j − m)Γ(j + m̄)

Γ(2j)Γ(1 − j − m)Γ(1 + m̄ − j)
, (3.24)

with B(j) as defined in eq. (A.5). Then we sum over a1 and ā1 (nine terms) and obtain

G2 = g−2
s

k2

16

πB(j)δ(0)

|z12|4(∆j+∆′

j′
+1)

Γ(1 − 2j′)Γ(j′ − m)Γ(j′ + m̄)

Γ(2j′)Γ(1 − j′ − m)Γ(1 + m̄ − j′)
. (3.25)

It is interesting to observe that in comparison with the two-point function (3.24), the

arguments in the gamma functions in G2 are shifted from j to j′ = j − 1. This shows that

in the definition of the chiral primary the action of ψa on the SL(2) operators Φj,m,m̄ shifts

the x-dependence of the two-point function from |x12|−4j to |x12|−4(j−1). Transforming G2

back to coordinate space, we obtain

G2 = g−2
s

k2

16

B(j)δ(0)

|x12|4(j−1)

1

|z12|4
(3.26)

which has the expected scaling behavior, |z12|−4∆ and |x12|−4h (∆ = 1, h = j′).

In order to obtain the two-point function of the corresponding n-cycle twist operators

of the boundary conformal field theory from this, we now follow the prescription given

in [8]. We find

〈Vj′,m′,m̄′(x1, x̄1)Vj′,−m′,−m̄′(x2, x̄2)〉bCFT

=
1

Vconf
g−2
s 〈V (1)

j′,m′,m̄′(z1 = z̄1 = 1;x1, x̄1)V
(1)
j′,−m′,−m̄′(z2 = z̄2 = 0;x2, x̄2)〉S2

= g−2
s

k2

16

B(j)

|x12|4(j−1)

δ(0)

Vconf

= (2j − 1) g−2
s

k2

16

B(j)

|x12|4j′
. (3.27)

Here Vconf =
∫

d2z|z|−2 is the volume of the conformal group on the sphere (the Möbius

group); this factor cancels the divergence coming from the delta function δ(0) in eq. (3.26)

up to a j-dependent factor, which is 2j − 1 [8].

Now we can compare this result to the boundary two-point function (2.8) found in the

symmetric orbifold theory. In particular, this now fixes the relative normalisation between

the worldsheet vertex operators V
(1)
j′,m′,m̄′(z, z̄;x, x̄) and the conformal field theory operators

Vj′,m′,m̄′(x, x̄)

V
(1)
j′,m′,m̄′(z, z̄;x, x̄) ⇐⇒ a(j)Vj′,m′,m̄′(x, x̄) , (3.28)
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where

a(j) =
k

gs4

√
(2j − 1)B(j) . (3.29)

3.2.2 Worldsheet three-point function

We now consider the three-point function

G3 = g2
s

〈
V

(1)
j′1,m′

1,m̄′

1,m1,m̄1
(z1, z̄1)V

(1)
j′2,m′

2,m̄′

2,m2,m̄2
(z2, z̄2)V

(0)
j′3,m′

3,m̄′

3,m3,m̄3
(z3, z̄3)

〉

S2
, (3.30)

where V
(0)
j′,m′,m̄′,m,m̄ is the descendant of the chiral primary V

(1)
j′,m′,m̄′,m,m̄. Since V (1) has

ghost number −1, while V (0) has ghost number zero, the total ghost number of G3 is then

−2, as required on the sphere. The explicit calculation can now be divided into four parts

G3 = GAA
3 + GAB

3 + GBA
3 + GBB

3 , (3.31)

where

GAA
3 = g−2

s

〈
V

(1)
j′1,m′

1,m̄′

1,m1,m̄1
(z1, z̄1)V

(1)
j′2,m′

2,m̄′

2,m2,m̄2
(z2, z̄2)W0,A

j′3,m′

3,m3
(z3) W̄0,A

j′3,m̄′

3,m̄3
(z̄3)

〉

GAB
3 = g−2

s

〈
V

(1)
j′1,m′

1,m̄′

1,m1,m̄1
(z1, z̄1)V

(1)
j′2,m′

2,m̄′

2,m2,m̄2
(z2, z̄2)W0,A

j′3,m′

3,m3
(z3) W̄0,B

j′3,m̄′

3,m̄3
(z̄3)

〉

GBA
3 = g−2

s

〈
V

(1)
j′1,m′

1,m̄′

1,m1,m̄1
(z1, z̄1)V

(1)
j′2,m′

2,m̄′

2,m2,m̄2
(z2, z̄2)W0,B

j′3,m′

3,m3
(z3) W̄0,A

j′3,m̄′

3,m̄3
(z̄3)

〉

GBB
3 = g−2

s

〈
V

(1)
j′1,m′

1,m̄′

1,m1,m̄1
(z1, z̄1)V

(1)
j′2,m′

2,m̄′

2,m2,m̄2
(z2, z̄2)W0,B

j′3,m′

3,m3
(z3) W̄0,B

j′3,m̄′

3,m̄3
(z̄3)

〉
,

and W0,A and W0,B are defined as in eq. (3.17).

We begin with the correlator GBB
3 . Substituting the explicit expressions for the vertex

operators, we get

GBB
3 = g−2

s

4

k2
ba1ba2Aa3b3bā1bā2Aā3 b̄3〈ψ

a1ψa2ψa3ψb3〉〈ψ̄ā1 ψ̄ā2 ψ̄ā3 ψ̄b̄3〉

× 〈Φj1,m1−a1,m̄1−ā1Φj2,m2−a2,m̄2−ā2Φj3,m3−a3−b3,m̄3−ā3−b̄3
〉

× 〈Φ′
j′1,m′

1,m̄′

1
Φ′

j′2,m′

2,m̄′

2
Φ′

j′3,m′

3,m̄′

3
〉|z12|−2 , (3.32)

where summation over ai, b3, āi, b̄3 (i = 1, 2, 3) is understood. Here we have already omitted

terms in the operator V
(0)
j′,m′,m̄′,m,m̄ which involve the spinor χa (cf. the discussion at the

end of section 3.1). Since the SU(2) spinor χa cannot be contracted with the SL(2) spinor

ψa, such terms do not contribute to the three-point function. The factor |z12|−2 is as before

the contribution from the ghosts.

Let us consider in detail the three-point functions of the primary fields ψa, Φj,m,m̄ and

Φ′
j′,m′,m̄′ . The three-point function involving the fermions ψa in GBB

3 is evaluated using

Wick contraction and the fermion propagator (3.22)

〈ψa1(z1)ψ
a2(z2)ψ

a3(z3)ψ
b3(z3)〉 = k2 ηa1[b3ηa3]a2

z13z23
. (3.33)
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This is non-vanishing only if

(a1 = −b3 , a2 = −a3 , a3 6= b3) or (a1 = −a3 , a2 = −b3 , a3 6= b3) . (3.34)

These constraints imply the relation a1 + a2 + a3 + b3 = 0.

The three-point functions of the SL(2) and SU(2) primary fields Φj,m,m̄ and Φ′
j′,m′,m̄′

are given by

〈Φj1,m1,m̄1(z1, z̄1)Φj2,m2,m̄2(z2, z̄2)Φj3,m3,m̄3(z3, z̄3)〉

= δ2(m1 + m2 + m3)W (ji;mi)Cj1,j2,j3

∏

i<j

1

|zij |2∆ij
(3.35)

〈Φ′
j′1,m′

1,m̄′

1
(z1, z̄1)Φ′

j′2,m′

2,m̄′

2
(z2, z̄2)Φ′

j′3,m′

3,m̄′

3
(z3, z̄3)〉

= δ2(m′
1 + m′

2 + m′
3) Ŵ (j′i;m

′
i)C ′

j′1,j′2,j′3

∏

i<j

1

|zij |2∆
′

ij

, (3.36)

where Cj1,j2,j3 and C ′
j′1,j′2,j′3

are the SL(2) and SU(2) structure constants, respectively, that

are explicitly given in eqs. (A.7) and (A.18) of appendix A. We have used the conventions

x12 = x1 −x2, z12 = z1 − z2, ∆12 = ∆j1 + ∆j2 −∆j3, j12 = j1 + j2 − j3, etc. The δ2 symbol

means that the three-point function (3.35) is only nonvanishing for m1 + m2 + m3 =

m̄1 + m̄2 + m̄3 = 0, and similarly for (3.36).

The function W (ji,mi) is the ‘Fourier transform’ of the factor
∏

i<j |xij |−2jij , i.e. it

reflects the dependence on the representation label x. This function is given by the integral

W (ji;mi) =

∫
d2x2 d2x3 xj2+m2−1

2 x̄j2+m̄2−1
2 |1 − x2|−2j12 (3.37)

× xj3+m3−1
3 x̄j3+m̄3−1

3 |1 − x3|−2j13 |x2 − x3|−2j23 .

An explicit expression for this integral has been found by Satoh [26],5

W (ji;mi) = (−)w
π2γ(−Ñ )γ(2j′3 + 1)

γ(1 + j′31)γ(1 + j′32)

Γ(1 + j′2 − m2)Γ(1 + j′2 − m̄2)

Γ(1 + j′2 − m2 − n3)Γ(1 + j′2 − m̄2 − n̄3)
(3.38)

×
∏

a=1,2

Γ(1 + j′a + ma)

Γ(−j′a − m̄a)
F

[
−n3,−j′31, 1 + j′12

−2j′3, 1 + j′2 − m2 − n3

]
F

[
−n̄3,−j′31, 1 + j′12

−2j′3, 1 + j′2 − m̄2 − n̄3

]

with w = m2 − m̄2 + n̄3 and j′i = ji − 1. Furthermore, m3 = −j′3 + n3 with n3 ≥ 0, and

m̄3 = −j′3 + n̄3 with n̄3 ≥ 0 (see appendix A). Finally, F [a, b, c; e, f ] is the hypergeometric

function 3F2(a, b, c; e, f ; 1) and Ñ = j′1 + j′2 + j′3 + 1.

We want to compare this 3-point function with the 3-point function of the boundary

conformal field theory (2.6). There we restricted ourselves to the case (2.6) with d = j′12 ≥
0. For these special values also the function Ŵ (j′i;m

′
i) simplifies, and we find

Ŵ (j′i;m
′
i) =

Γ(j′13 + 1)Γ(j′12 + 1)

Γ(2j′1 + 1)
. (3.39)

5In Satoh’s analysis this integral appears in a slightly different context as he uses different conventions

for the SL(2) representations.
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This is shown in appendix A, using the SU(2) OPE coefficients [17] for the case described

by (2.6). Substituting eqs. (3.33), (3.35) and (3.36) in GBB
3 , we obtain

GBB
3 = g−2

s k2 ba1ba2Aa3b3bā1bā2Aā3 b̄3
ηa1[b3ηa3]a2ηā1[b̄3ηā3]ā2 Cj1,j2,j3C

′
j′1,j′2,j′3

δ2(
∑

i mi)

× W (ji;m1 − a1,m2 − a2,m3 − a3 − b3)Ŵ (j′i;m
′
i)

∏

i<j

1

|zij |2(∆ij+∆′

ij+1)
. (3.40)

We will now perform the sum over the eight indices ai, b3, āi, b̄3 (i = 1, 2, 3). We expect

that after taking the sum, the function W (ji; . . .) in GBB
3 is shifted to W (ji − 1;mi),

which is the ‘Fourier transform’ of
∏

i<j |xij |−2jij+2 =
∏

i<j |xij |−2j′ij . GBB
3 would then

have the same dependence on the coordinates xi (i = 1, 2, 3) as the boundary three-point

function (2.9). In order to check this, we consider the special case where the SL(2) quantum

numbers are6

m1 = m̄1 = j′1 − d ,

m2 = m̄2 = j′2 − 1 , (3.41)

m3 = m̄3 = −j′3 + 1 = −(j′1 + j′2 − d) + 1 .

The condition that n3 ≥ 0 then translates into

n3 = 1 − a3 − b3 ≥ 0 . (3.42)

The constraints (3.34) and (3.42) (and similar constraints for the bared indices) imply that

there are 144 nonvanishing terms in GBB
3 which we sum up using computer algebra. We

then obtain

GBB
3 = g−2

s gBB(j′i)Cj1,j2,j3 C ′
j′1,j′2,j′3

W (ji − 1;mi) Ŵ (j′i;m
′
i)

∏

i<j

1

|zij |2(∆ij+∆′

ij+1)
, (3.43)

where the function gBB(j′i) turns out to be

gBB(j′i) =
k2

16
(2j′3)

2
. (3.44)

In particular, this expression shows the desired shift in the ji dependence of W .

We proceed similarly for the remaining terms GAA
3 , GAB

3 and GBA
3 . As shown in

appendix B, these terms have the same structure as GBB
3 , but with gBB(j′i) replaced by

gAA(j′i) =
k2

16
(1 + j′1 + j′2 − j′3)

2 , (3.45)

gAB(j′i) = gBA(j′i) =
k2

16
(1 + j′1 + j′2 − j′3)2j

′
3 . (3.46)

After adding up the four terms, we obtain

G3 = g2
s g(j′i)Cj1,j2,j3 C ′

j′1,j′2,j′3
W (ji − 1;mi) Ŵ (j′i;m

′
i)

∏

i<j

1

|zij |2(∆ij+∆′

ij+1)
, (3.47)

6Because of the SL(2) covariance, this result should then hold for arbitrary values of mi, m̄i (i = 1, 2, 3).
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with

g(j′i) = gAA(j′i) + gAB(j′i) + gBA(j′i) + gBB(j′i) =
k2

16
(1 + j′1 + j′2 + j′3)

2 . (3.48)

The product of the SL(2) and SU(2) structure constants Cj1,j2,j3 and C ′
j′1,j′2,j′3

in G3

can now be simplified using the identity

Cj1,j2,j3C
′
j′1,j′2,j′3

=
√

B(j1)B(j2)B(j3) , (3.49)

which is shown in appendix C. This finally allows us to write G3 as

G3 = g2
s

k2

16
(j′1 + j′2 + j′3 + 1)2 W (ji − 1;mi) Ŵ (j′i;m

′
i)

∏

i

B(ji)
1/2

∏

i<j

1

|zij |2
. (3.50)

Before comparing this to the dual boundary conformal field theory answer let us pause

to comment on the identity (3.49) which is somewhat striking: it states that, for canoni-

cally normalised fields, the operator algebra coefficients of SL(2)k are inverse to those of

SU(2)k′ (for k = k′)! The technical reason for this is that the functions G(j) appearing

in Cj1,j2,j3 and the functions P (j′) occurring in C ′
j′1,j′2,j′3

behave inversely to one another.

More precisely, from the definition of the functions G(j) and P (j′), we obtain the simple

relation

G(−j) =
G(−1)

P (j′)
, (3.51)

where G(−1) is a regular function, see appendix C for details. In the product C · C ′

the poles of the structure constants Cj1,j2,j3 therefore cancel precisely against the zeros of

C ′
j′1,j′2,j′3

.

Returning to the question of the AdS/CFT correspondence, we need to transform G3

back into x-space in order to compare it with the boundary three-point function (2.9).

This is now trivial since we can use the Satoh formula again, except that now ji has been

shifted to j′i = ji − 1, as already discussed above. In particular, this therefore reproduces

the same x-dependence as in (2.9). It thus remains to check that also the overall factor

of the three-point functions agree. From the analysis of the two-point function we have

deduced how the fields have to be rescaled, see eq. (3.28). Taking this into account, we

then obtain from G3 the rescaled function

Ĝ3 =
gs4

k
(j′1 + j′2 + j′3 + 1)2

Γ(j′13 + 1)Γ(j′12 + 1)

Γ(2j′1 + 1)

∏

i

(2j′i + 1)−1/2
∏

i<j

1

|xij |2j′ij
, (3.52)

where we have also performed the integral over the world-sheet coordinates, which in this

case just cancels the volume of the Möbius group. Since k = N5, Ĝ3 scales as gs/k ∼
1/
√

N1N5 = 1/
√

N . This large N scaling behavior agrees then precisely with that of the

boundary three-point function (2.9), see (2.13). This is a non-trivial consistency check

since the functional dependence on the j′i is quite complicated!

– 14 –



J
H
E
P
0
4
(
2
0
0
7
)
0
5
0

4. Conclusions

In this paper we have compared correlation functions of chiral primary operators of the

AdS3×S3×T 4 WZW model with the corresponding amplitudes in the boundary conformal

field theory that can be defined as a symmetric orbifold. The comparison of the 2-point

functions determines the relative normalisation of the chiral primary fields in the two

descriptions. It is then a non-trivial consistency check to compare the coefficients of the

3-point functions. In the large N limit in which the sphere correlators (that we have

calculated) dominate the string perturbation series, we have found beautiful agreement.

We should note that the chiral primaries we have considered lie in short multiplets and are

therefore protected by non-renormalisation theorems. It therefore makes sense to compare

these correlation functions.

It would be interesting, though technically demanding, to repeat this analysis for the

4-point functions. This is the first example where in the world-sheet theory a non-trivial

integral over the cross-ratio will have to be performed. It would be interesting to understand

in detail how this will manifest itself in the dual boundary conformal field theory. For the

case of the usual AdS5 × S5 case, Gopakumar has suggested [9] that this integral becomes

the Schwinger parametrisation of the propagator. This idea has recently been tested a

little bit further [27, 28].

Note added: After completion of this paper the paper [30] appeared which contains some

overlapping results.
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A. Correlators in SL(2)k and SU(2)k′ WZW models

A.1 Two- and three-point functions in the SL(2)k WZW model

The chiral primaries of the SL(2) WZW model are denoted by7

Φj,m,m̄(z, z̄) = Φj,m(z) Φ̄j,m̄(z̄) with ∆j = ∆̄j = −j(j − 1)

k − 2
, (A.1)

where k is the level of the affine Lie algebra. In the current context only half-integer j will

be relevant (because of (3.7)). In this case, the OPEs (3.4) imply that the values of m and

m̄ run between m = −(j − 1), . . . , (j − 1).

7In this appendix we only deal with the bosonic currents; k and k′ therefore refer to the bosonic levels.
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The vertex operators Φj,m,m̄(z, z̄) are the ‘Fourier transforms’ of the operators Φj(z, z̄;x, x̄)

Φj,m,m̄(z, z̄) =

∫
d2xxj+m−1x̄j+m̄−1Φj(z, z̄;x, x̄) . (A.2)

The inverse transformation is

Φj(z, z̄;x, x̄) =
1

Vconf

∑

m,m̄

Φj,m,m̄(z, z̄)x−m−j x̄−m̄−j , (A.3)

where Vconf =
∫

d2x|x|−2.

The two- and three-point functions of Φj(z, z̄;x, x̄) were computed in [18 – 20]. The

two-point function is given by8

〈Φj1(z1, z̄1;x1, x̄1)Φj2(z2, z̄2;x2, x̄2)〉 (A.4)

=
1

|z12|4∆j1

[
1

(2π)2
δ(x12) δ(x̄12) δ(j1 + j2 − 1) +

B(j1)

|x12|4j1
δ(j1 − j2)

]
,

with coefficient

B(j) =
1

(2π)2
k − 2

π

ν1−2j

γ(2j−1
k−2 )

and γ(x) =
Γ(x)

Γ(1 − x)
, ν = π

Γ(1 − 1
k−2)

Γ(1 + 1
k−2)

. (A.5)

The three-point function is

〈Φj1(z1, z̄1;x1, x̄1)Φj2(z2, z̄2;x2, x̄2)Φj3(z3, z̄3;x3, x̄3)〉 = Cj1j2j3

∏

i<j

1

|xij |2jij |zij |2∆ij
,

(A.6)

with ∆12 = ∆j1 + ∆j2 − ∆j3, j12 = j1 + j2 − j3, etc. and coefficients

Cj1,j2,j3 =
1

(2π)2
k − 2

2π3

G(1 − j1 − j2 − j3)G(−j12)G(−j23)G(−j31)

νj1+j2+j3−2G(−1)G(1 − 2j1)G(1 − 2j2)G(1 − 2j3)
, (A.7)

where

G(j) = (k − 2)
j(k−1−j)
2(k−2) Γ2(−j|1, k − 2) Γ2(k − 1 + j|1, k − 2) , (A.8)

and Γ2(x|1, ω) is the Barnes double Gamma function. G(j) has poles at j = n + m(k − 2)

and j = −n − 1 − (m + 1)(k − 2) with n,m = 0, 1, . . .. A discussion of these poles can be

found in [8]. In Cj1,j2,j3 the poles j1 + j2 + j3 = n + k, n = 0, 1, . . . are excluded by the

condition

j1 + j2 + j3 ≤ k − 1 . (A.9)

8The SL(2) amplitudes were only determined up to an overall normalisation in [19]. In the following we

shall use a different overall normalisation from [19], which seems to be more natural in the current context;

this will become apparent in appendix C. We thank Jörg Teschner for explaining this to us.
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The function G(j) satisfies the recursion relation

G(j + 1) = γ(− j+1
k−2)G(j) . (A.10)

In m-space the two- and three-point functions are given by

〈Φj,m,m̄(z1, z̄1)Φj,−m,−m̄(z2, z̄2)〉 =
πB(j)δ(0)

|z12|4∆j

Γ(1 − 2j)Γ(j − m)Γ(j + m̄)

Γ(2j)Γ(1 − j − m)Γ(1 + m̄ − j)
(A.11)

and

〈Φj1,m1,m̄1(z1, z̄1)Φj2,m2,m̄2(z2, z̄2)Φj3,m3,m̄3(z3, z̄3)〉

= δ2(m1 + m2 + m3)W (ja;ma)Cj1,j2,j3

∏

i<j

1

|zij |2∆ij
, (A.12)

with coefficients B(j) and Cj1,j2,j3 as above.

An explicit expression for W (ji,mi) can be found in [26]. Defining j′i = ji − 1 (i = 1, 2, 3),

the integral (3.37) is identical to eq. (2.8) in [26] (upon cyclic permutation of the indices)

which can written as

W (ji;mi) = (−)m2−m̄2+n̄3
π2γ(−Ñ)γ(2j′3 + 1)

γ(1 + j′31)γ(1 + j′32)

Γ(1 + j′2 − m2)Γ(1 + j′2 − m̄2)

Γ(1 + j′2 − m2 − n3)Γ(1 + j′2 − m̄2 − n̄3)

×
∏

a=1,2

Γ(1 + j′a + ma)

Γ(−j′a − m̄a)
F

[
−n3,−j′31, 1 + j′12

−2j′3, 1 + j′2 − m2 − n3

]
F

[
−n̄3,−j′31, 1 + j′12

−2j′3, 1 + j′2 − m̄2 − n̄3

]
(A.13)

where F

[
a, b, c

e, f

]
is the hypergeometric function 3F2(a, b, c; e, f ; 1). Here Ñ = j′1+j′2+j′3+1,

m3 = −j′3 + n3 and m̄3 = −j′3 + n̄3 (n3, n̄3 = 0, 1, . . .); m1,m2 and m̄1, m̄2 are arbitrary.

A.2 Two- and three-point functions in the SU(2)k′ WZW model

The chiral primaries of the SU(2)k′ WZW model are denoted by

Φ′
j′,m′,m̄′(z, z̄) = Φ′

j′,m′(z) Φ̄′
j′,m̄′(z̄) , (A.14)

and have conformal dimension

∆′
j′ = ∆̄′

j′ =
j′(j′ + 1)

k′ + 2
, 0 ≤ j′ ≤ k′

2
, (A.15)

where j′ is the SU(2) representation label and k′ the level of the affine Lie algebra.

As for the case of SL(2) it is convenient to introduce instead of the m′ variables

continuous y variables (see for example [29]). In these conventions the two- and three-

point functions of Φ′
j′(z, z̄; y, ȳ) are then [16, 17, 29]

〈Φ′
j′1

(z1, z̄1; y1, ȳ1)Φ
′
j′2

(z2, z̄2; y2, ȳ2)〉 = δj′1,j′2

|y12|2j′1

|z12|
4∆′

j′
1

, (A.16)
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and

〈Φ′
j′1

(z1, z̄1; y1, ȳ1)Φ
′
j′2

(z2, z̄2; y2, ȳ2)Φ
′
j′3

(z3, z̄3; y3ȳ3)〉 = C ′
j′1,j′2,j′3

∏

i<j

|yij |2j′ij

|zij |2∆
′

ij

, (A.17)

with ∆′
12 = ∆′

j′1
+ ∆′

j′2
− ∆′

j′3
, etc. The relevant coefficients are

C ′
j′1,j′2,j′3

=

√√√√ γ( 1
k′+2)

γ(
2j′1+1
k′+2 )γ(

2j′2+1
k′+2 )γ(

2j′3+1
k′+2 )

P (j′1 + j′2 + j′3 + 1)P (j′12)P (j′23)P (j′31)

P (2j′1)P (2j′2)P (2j′3)
(A.18)

and

P (j′) =

j′∏

m=1

γ( m
k′+2) , P (0) = 1 , γ(x) =

Γ(x)

Γ(1 − x)
. (A.19)

The functions P (j) are nonvanishing for 0 ≤ j′ ≤ k′ + 1. Therefore, C ′
j′1,j′2,j′3

6= 0, if

j′1 + j′2 + j′3 ≤ k′ . (A.20)

In m′-space the three-point function can be written as

〈Φ′
j′1,m′

1,m̄′

1
(z1, z̄1)Φ

′
j′2,m′

2,m̄′

2
(z2, z̄2)Φ

′
j′3,m′

3,m̄′

3
(z3, z̄3)〉 = δ2(

∑3
a=1 m′

a)D
j′3
j′1j′2

∏

i<j

1

|zij |2∆
′

ij

,

(A.21)

where the SU(2) operator algebra coefficients Dj′3
j′1j′2

can be found in [17] for the case that

m′
1 = m̄′

1 = j′1 − d , m′
2 = m̄′

2 = j′2 , m′
3 = m̄′

3 = −j′3 = −(j′1 + j′2 − d) . (A.22)

They are given by (see eq. (2.46) in [17])

Dj′3
j′1j′2

=
(2j′2)! j

′
13!

j′12! (2j
′
3)!

d∏

i=1

γ( i
k′+2) γ(

2j′1+1+i
k′+2 )

γ(1 +
2j′2−i+1

k′+2 ) γ(
2j′3−i+1

k′+2 )

√
(a′

j′1
)−1 a′

j′2
a′

j′3
(A.23)

with

a′j′ =

2j′∏

i=1

γ(1 + i
k′+2)

γ( 1+i
k′+2)

(A.24)

and d = j′12 = j′1 + j′2 − j′3. Here we performed a cyclic rotation of the indices, j′1 → j′2,

etc. Of course, the coefficients Dj′3
j′1j′2

are related to the structure constants C ′
j′1,j′2,j′3

given

by eq. (A.18). After some algebra, one finds

Dj′3
j′1j′2

=
Γ(j′13 + 1)Γ(j′12 + 1)

Γ(2j′1 + 1)
C ′

j′1,j′2,j′3
≡ Ŵ (j′i,m

′
i)C ′

j′1,j′2,j′3
. (A.25)
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B. The correlators GAA
3 , GAB

3 , GBA
3

In this section we give some further details on the computation of the terms GAA
3 , GAB

3 and

GBA
3 appearing in the worldsheet three-point function G3 in section 3.2.2. These terms can

be written more explicitly by substituting the operators Wj′,m′,m and W0
j′,m′,m, as defined

in eqs. (3.10) and (3.17), into eq. (3.31).

For the term GAA
3 , we then get

GAA
3 = g−2

s ba1ba2ba3bā1bā2bā3〈Φ′
j′1,m′

1,m̄′

1
Φ′

j′2,m′

2,m̄′

2
Φ′

j′3,m′

3,m̄′

3
〉 |z12|−2 (B.1)

× 〈: ψa1 ψ̄ā1Φj1,m1−a1,m̄1−ā1 :: ψa2 ψ̄ā2Φj2,m2−a2,m̄2−ā2 :: Ja3 J̄ ā3Φj3,m3−a3,m̄3−ā3 :〉 ,

where we have to sum over ai and āi (i = 1, 2, 3). The factor |z12|−2 is again the contribution

from the ghosts. Using Wick contraction and the OPE’s (3.4), GAA
3 can be rewritten as

GAA
3 = g−2

s ba1ba2ba3bā1bā2bā3〈Φ′
j′1,m′

1,m̄′

1
Φ′

j′2,m′

2,m̄′

2
Φ′

j′3,m′

3,m̄′

3
〉k

2

4

ηa1a2ηā1ā2

|z13|2|z23|2|z12|2
(B.2)

×
(
fm1−a1

a3
f m̄1−ā1

ā3
〈Φj1,m1−a1+a3,m̄1−ā1+ā3Φj2,m2−a2,m̄2−ā2Φj3,m3−a3,m̄3−ā3〉

+ fm2−a2
a3

f m̄2−ā2
ā3

〈Φj1,m1−a1,m̄1−ā1Φj2,m2−a2+a3,m̄2−ā2+ā3Φj3,m3−a3,m̄3−ā3〉
+ fm1−a1

a3
f m̄2−ā2

ā3
〈Φj1,m1−a1+a3,m̄1−ā1Φj2,m2−a2,m̄2−ā2+ā3Φj3,m3−a3,m̄3−ā3〉

+fm2−a2
a3

f m̄1−ā1
ā3

〈Φj1,m1−a1,m̄1−ā1+ā3Φj2,m2−a2+a3,m̄2−ā2Φj3,m3−a3,m̄3−ā3〉
)

,

with fm
a = (m − j + 1,m,m + j − 1) for (a = +, 0,−). Due to the constraints a1 = −a2

and ā1 = −ā2, we effectively sum only over four different indices (a1, a3, ā1, ā3 say). We

therefore get 34 = 81 terms which we sum up in the same way as explained in detail for

GBB
3 in section 3.2.2. We find

GAA
3 = g−2

s gAA(j′i)Cj1,j2,j3C
′
j′1,j′2,j′3

W (ji − 1;mi)Ŵ (j′i;m
′
i)

∏

i<j

1

|zij |2(∆ij+∆′

ij+1)
, (B.3)

with

gAA(j′i) =
k2

16
(1 + j′1 + j′2 − j′3)

2 . (B.4)

Next, we consider the correlator GAB
3 given by

GAB
3 = g−2

s

2

k
ba1ba2ba3bā1bā2Aā3 b̄3〈Φ′

j′1,m′

1,m̄′

1
Φ′

j′2,m′

2,m̄′

2
Φ′

j′3,m′

3,m̄′

3
〉〈ψ̄ā1 ψ̄ā2ψ̄ā3 ψ̄b̄3〉 |z12|−2

×〈: ψa1Φj1,m1−a1,m̄1−ā1 :: ψa2Φj2,m2−a2,m̄2−ā2 :: Ja3Φj3,m3−a3,m̄3−ā3−b̄3 :〉 . (B.5)

With the help of the OPE’s (3.4) and eq. (3.33), we get

GAB
3 = g−2

s ba1ba2ba3bā1bā2Aā3 b̄3〈Φ
′
j′1,m′

1,m̄′

1
Φ′

j′2,m′

2,m̄′

2
Φ′

j′3,m′

3,m̄′

3
〉k2 ηā1[b̄3ηā3]ā2

|z13|2|z23|2|z12|2
ηa1a2

×
(
fm1−a1

a3
〈Φj1,m1−a1+a3,m̄1−ā1Φj2,m2−a2,m̄2−ā2Φj3,m3−a3,m̄3−ā3−b̄3〉

+ fm2−a2
a3

〈Φj1,m1−a1,m̄1−ā1Φj2,m2−a2+a3,m̄2−ā2Φj3,m3−a3,m̄3−ā3−b̄3〉
)

, (B.6)
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with fm
a = (m − j,m,m + j) for (a = +, 0,−), as before. Here we have to sum over the

seven indices ai, āi, and b3 (i = 1, 2, 3). Again, due to several constraints,

a1 = −a2 , (B.7)

(ā1 = −b̄3 , ā2 = −ā3 , ā3 6= b̄3) or (ā1 = −ā3 , ā2 = −b̄3 , ā3 6= b̄3) ,

there are only 108 nonvanishing terms (out of 37). The summation of these terms yields

GAB
3 = g−2

s gAB(j′i)Cj1,j2,j3C
′
j′1,j′2,j′3

W (ji − 1;mi)Ŵ (j′i;m
′
i)

∏

i<j

1

|zij |2(∆ij+∆′

ij+1)
, (B.8)

with

gAB(j′i) =
k2

16
(1 + j′1 + j′2 − j′3)2j

′
3 . (B.9)

The same result is obtained for GBA
3 (i.e. GBA

3 = GAB
3 ).

C. Product of SL(2)k and SU(2)k′ structure constants

In this appendix we compute the product of the SL(2)k and SU(2)k′ structure constants.

Here we work with the supersymmetric levels, i.e. we need to shift k → k+2 and k′ → k′−2

in Cj1,j2,j3 and C ′
j′1,j′2,j′3

, respectively, and identify k = k′. From eq. (A.10) we then find a

simple relation between the functions G(j) and P (j′) appearing in the SL(2) and SU(2)

structure constants,

G(−j) =
1

γ( j−1
k )

· · · 1

γ( 1
k )

G(−1) =
G(−1)

P (j − 1)
. (C.1)

Substituting this into the definition of the SL(2) structure constant Cj1,j2,j3 yields

Cj1,j2,j3 =
1

(2π)2
1

2π3

k P (2j1 − 2)P (2j2 − 2)P (2j3 − 2)

νj1+j2+j3−2P (j1 + j2 + j3 − 2)P (j12 − 1)P (j23 − 1)P (j31 − 1)

=
1

(2π)3

√
γ( 1

k )

γ(2j1−1
k )γ(2j2−1

k )γ(2j3−1
k )

1

C ′
j′1,j′2,j′3

k

π2νj1+j2+j3−2
, (C.2)

where j′i = ji − 1. Using the definitions of B(j) and ν, eq. (A.5), we finally get

Cj1,j2,j3C
′
j′1,j′2,j′3

=
√

B(j1)B(j2)B(j3) . (C.3)

The (trivial) numerical coefficient in (C.3) is a consequence of our choice of normalisation

for the SL(2) amplitudes — see footnote 9.
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